解三角形(有答案)

专题:解三角形
班级: 一、选择题: 1.在 ?ABC 中,若 sin 2 A ? sin 2 B ,则 ?ABC 的形状是( A.等腰三角形 B.直角三角形 C.等腰三角形或直角三角形 D.等腰直角三角形 2. ?ABC 中,角 A, B, C 所对的边分别为 a, b, c ,若 A.钝角三角形 B.直角三角形 C ) 姓名:

c ? cos A ,则 ?ABC 为( A ) b
D.等边三角形 D )

C.锐角三角形

3. ?ABC 的外接圆半径 R 和 ?ABC 的面积都等于 1,则 sin A ? sin B ? sin C ? ( A.

1 4

B.

3 2

C.

3 4

D.

1 2

B 4 . 在 ?ABC 中 , 角 A, B, C 所 对 的 边 分 别 为 a, b, c , 若 a c o sA? b c o s , 则
s i nA c o A? s
A. ?
2 c o B? ( D ) s

1 2

B.

1 2

C. ?1

D.1
2

5. ?ABC 的三个内角 A, B, C 所对的边分别为 a, b, c , a sin A sin B ? b cos A ? 2a , 则

b ?( D ) a
B. 2 2 C. 3 D. 2

A. 2 3

6.已知锐角三角形 ABC 的面积为 3 3 , BC ? 4 , CA ? 3 ,则角 C 的大小为( D ) A. 75
?

B. 60

?

C. 45

?

D. 30

?

? 7.在 ?ABC 中,已知角 A、B、C 所对的边分别为 a, b, c ,且 a ? 3 , c ? 8 , B ? 60 ,

则 sin A 的值是( A.

D )

3 16

B.

3 14

C.

3 3 16

D.

3 3 14
2 2 2

c a c 8. ?ABC 中, A、 C 所对的边分别为 a, b, c , b ? ? ? b 在 角 B、 若
的值为( B )
高三数学(文科)专题——解三角形 第 1 页

6 5

i ( , n 则s

B) C ?

4 3 3 C. ? D. 5 5 5 ? ? ??? ??? ??? ??? 2 ??? ??? ? ? ? ? ??? ? 9.在 ?ABC 中, ( BC ? BA) ? AC ?| AC | , BA ? BC ? 3 ,| BC |? 2 ,则 ?ABC 的面积
A. ? B. 等于( A. A ) B.

4 5

3 2

2 2

C.

1 2

D.1

10. ?ABC 中, A、 C 所对的边分别为 a, b, c , C ? 120? , ? 在 角 B、 若 c A. a ? b B. a ? b C. a ? b

则 2a , ( A )

D. a 与 b 大小关系不能确定

11.在 ?ABC 中, tan A ? 边长为( A.2 D ) B.

1 3 10 , cos B ? ,若 ?ABC 的最长边为 5 ,则最短边的 2 10

5 2

C.

3 2

D.1

? 12.在 ?ABC 中, AB ? AC ? 2 , BC ? 2 3 ,点 D 在 BC 边上, ?ADC ? 45 ,则

AD 的长度等于( A. 2 二、填空题: B.

A )

2 2

C.

3 2

D.1

13. ?ABC 中, A, B, C 所对的边分别为 a, b, c , 在 角 且满足 cos 则 ?ABC 的面积为 2 。

? ? A 2 5 ??? ??? ? ,AB ? AC ? 3 , 2 5
cos B b ?? , B? 则 cos C 2a ? c

14. 已知 a, b, c 分别是 ?ABC 的三个内角 A, B, C 所对的边, 若

2? 3



15 . 设 a, b, c 分 别 为 ?ABC 的 三 个 内 角 A, B, C 所 对 的 边 , 且 满 足 条 件

a b c ? ? =4,则 ?ABC 的面积等于 cos A cos B cos C
高三数学(文科)专题——解三角形

3
第 2 页



16.已知 ?ABC 的一个内角为 120? ,并且三边长构成公差为 4 的等差数列,则 ?ABC 的 面积为

15 3



17.在 ?ABC 中,角 A、B、C 所对的边分别为 a, b, c ,已知点 D 是 BC 边的中点,且

???? ??? 1 2 ? AD ? BC ? ( a ? 3ac) ,则角 B ? 2

30?



18. ?ABC 的内角 A、B、C 所对的边分别为 a, b, c ,已知 a, b, c 成等比数列,且角 A、 B、C 成等差数列,若 ?ABC 的面积为 三、解答题: 19.港口 A 北偏东 30? 方向的 C 处有一轮船,距离检查站为 31 海里,该轮船从 B 处沿正 西方向航行 20 海里后到达 D 处观测站,已知观测站与检查站距离 21 海里,问此时 轮船离港口 A 还有多远? 答案:15 海里

3 ,则 ?ABC 的周长为 2

3 2



北 C 东

A

D

B

20.设 ?ABC 的内角 A, B, C 的对边分别为 a, b, c , a ? 4 , c ? 13 , sin A ? sin B . (1)求 b 边的长; (2)求角 C 的大小; (3)求 ?ABC 的面积. 答案: (1) b ? 1 ; (2) C ?

?
3

; (3) 3 .

21.在 ?ABC 中,角 A, B, C 所对的边分别是 a, b, c ,且 cos A ? (1)求角 C; (2)若 a ? b ?

2 5 10 , sin B ? . 5 10

2 ? 1 ,求边 c .
高三数学(文科)专题——解三角形 第 3 页

答案: (1) C ?

3? ; (2) 3 . 4 2 sin ? x ? cos(? x ?

22.已知函数 f ( x) ? (1)求 ? 的值;

?
4

)?

1 的最小正周期为 2? . 2

(2) ?ABC 的内角 A, B, C 所对边分别为 a, b, c , f ( A) ? 设 若 的面积为 1,求 a . 答案: (1) ? ? ?

2 b , ? 1 , ?ABC 且 2

1 ; (2) a ? 5 . 2

23.已知 ?ABC 中,角 A, B, C 所对的边分别是 a, b, c ,且 2(a2 ? b2 ? c2 ) ? 3ab .

A? B ; 2 (2)若 c ? 2 ,求 ?ABC 面积的最大值. 7 答案: (1) ; (2) 7 . 8
(1)求 sin
2

24. ?ABC 的三个内角 A, B, C 所对的边分别是 a, b, c ,a sin A sin B ? b cos A ? 2a .
2

(1)求

b ; a
2 2 2

(2)若 c ? b ? 3a ,求 B. 答案: (1) 2 ; (2) 45 .
?

高三数学(文科)专题——解三角形

第 4 页


相关文档

高中数学解三角形(有答案)
解三角形单元卷(难题有答案)
必修5 解三角形 有答案
2015高考理科数学三角函数、解三角形总复习题(有答案)
高三数学三角函数、解三角形章末复习测试(有答案)
正余弦定理及解三角形整理(有答案)
解三角形专题复习------(有答案)--32
高中数学解三角形应用举例(有答案)DOC
高中数学模拟汇编---三角函数与解三角形解答题专项训练(1有答案)
高三数学(文)教师用书:第三章-三角函数、解三角形(有答案)
电脑版